

USING COMPUTER MODELS **TO HELP IN FARM** PLANNING, DECISION MAKING Rabi H. Mohtar and Dennis R. Buckmaster Agricultural and Biological Engineering Department Penn State

Computer models serve as powerful tools to simulate complex systems for the purpose of understanding the linkages and interrelations of the components of the system. These models offer the power to understand, analyze, and optimize these systems where traditional experimental tools fail.

During the last decade, ready access to computing power has increased, bringing a bigger need and practical use for these models.

Grazing systems are naturally cross-disciplinary; with these systems, soil, crop, animal, and machines affect each other in ways that can significanly affect profitability. Such a system is a typical example of a complex set of linkages that cannot be fully understood without the help of a model. These models, in general, are referred to as decision support systems (DSS), since they can help the user make more intelligent decisions through better information.

A typical example of such DSS is the comprehensive grazing model (GRASIM) that link all components of the pasture system. GRASIM was developed at Penn State to obtain a better understanding of the pasture system and determine management strategies that yield more efficient utilization of pastures. It can generate information suitable for estimating the financial and environmental consequences of alternative

dairy management strategies including partial mechanical harvest in the context of the year round feed needs of the dairy herd. In addition, the model can evaluate the effect of stocking rate on needed supplementation and amount of harvested feed.

GRASIM simulates intensive rotational grazing systems by accounting for carbon, nitrogen and water budgets in the pasture environment. GRASIM requires input data regarding soils, plants, animals, and management. Among other things, the model predicts soil water level, soil nitrogen level, accumulated grazed intake, harvested yield, and nitrogen leaching. GRASIM simulates four components (grass growth, soil water, soil nitrogen, harvest/ grazing) with a daily time step. It models multiple paddocks that share the same soil and weather information but can have a different grass species.

GRASIM is still under development; funding rermitting, it will be outfitted with a user interface making it usefu! to farmers and

Station.

Computer Committee

(Continued from Page A23)

farm advisors. The scenarios that

could be evaluated by the model are widespread. Current plans are

to make the model capable of addressing these questions: · How much stored (supple-

mental) forage is needed with var-

ying stocking rate on the graze-

· How much can nitrogen fertil-

izer application to grass pastures

help to economically increase

be harvested during spring growth

and how does this vary among

· Should I plant more or less

• Am I better off with 50 cows

each producing 21,000 lb milk/

year or 60 cows each producing

world's problems, but certainly

will help agronomists, nutrition-

ists, economists, and engineers

pool their knowledge in a way

which traditional experimentation

been a collaborative effort among

the Penn State Departments of Agriculture and Biological Engi-

neering, Agronomy, Dairy and

Animal Science, and Agricultural

Economics and Rural Sociology.

Development has been financially

supported by USDA Special

Research Grants and the Pennsyl-

vania Agricultural Experiment

Development of GRASIM has

GRASIM will not solve all the

years and with soil type?

17,000 lb milk/year?

has fallen short.

How much forage will need to

able land?

herd size?

com?

The Quick Barnsheet program and Westfalia Dairy Plan are not intended to be a replacement for DHIA mainframe computing. Component analysis date can only be added into the reports after the samples have been tested in the lab.

Through partnerships of these two programs the dairymen may received action lists (pregnancy

checks, dry dates, etc.) and rankings by test day milk for regrouping cows. Using these programs gives the dairyman an advantage in making quick accurate decisions.

Please feel free to contact Pa. DHIA at 1-800-344-8378, if we can assist with your dairy operation.

Examples of Westfalia Dairy Plan reports include the following:

				COW	s due	TO (CALVE				
	COW			LAC	FATIO	ATION		BRED			
NAME	GP	L#	AI 1	FRESH	DAT	re i	DAYS	BULL	DU	10	STAT
782	0	4	4	6/24	11/26	i /93	340	8H2205	9/2/	94	Dry
849	0	3	2	7/10	12/8	/93	328	9H1360	9/14	/94	Preg
794	0	4	8	2/7	1/13	/94	292	8H2106	10/20)/94	Dry
421	0	1	2	9/17	1/18	/94	287	9H1360	10/2	5/94	Preg
705	0	5	4	7/11	1/19	/94	286	9H136·)	10/20	5/94	Dry
993	0	2	1	11/15	1/28	/94	277	9H1289	11/4	/94	Dry
851	0	3	2	10/18	1/29	/94	276	9H1387	11/5	/94	Dry
943	0	2	1	10/21	1/30	/94	275	9H128)	11/6	/94	Dry
407	0	1	1	11/17	2/2/	94	272	9H1289	11/9	/94	Dry
894	0	3	3	9/28	2/2/	94	273	9H1289	11/9	/94	Dry
875	0	3	2	10/15	2/3/	94	271	8H1351	11/10)/94	Dry
921	0	2	3	7/28	2/11	/94	263	9H1360	11/1	3/94	Dry
792	0	4	3	10/9	2/15	/94	259	8H2347	11/22	2/94	Dry
752	0	5	1	10/7	2/19	/94	255	8H2106	11/20	5/94	Dry
999	0	1	3	9/18	2/22	/94	252	9H1360	11/2	9/94	Dry
COWS TO CHECK FOR PREGNANCY											
COW					INSEM	IINAT	ſED				
		. (CALVI	NG				EXPEC	red	CA	LVING
NAME	STAT	US	DAT	E DA	TE B	ULL	DAYS	DUE DA	\TE	INI	ERVAL
501	Bree	i	4/18/9	9/1	9/94 9I	11057	43	6/26/9	5		434
411	Brea	1	10/12/	94 9/2	1 /94 9 E	11289	41	6/28/9	5		624
940	Bree	1	7/5/9	4 9/2	3 /94 81	12205	39	6/30/9	5		360
494	Bree	1	2/15/5	9/2	4/94 8I	11986	38	7/1/9	5		501
892	Bree	1	2/10/9	9/2	6/94 8I	12347	36	7/3/9	5		508
452	Bree	1	2/15/5	9/2	7 /94 81	11986	35	7/4/9	5		504
712	Bree	1	1/26/9	9/2	8/94 81	11968	34	7/5/9	5		525
480	Brea	i	7/1/9	6 9/2	8/94 8I	12205	34	7/5/9	5		369
975	Bree	1	2/27/	9/3	0/94 9I	H1360	32	7/7/9	5		495
995	Bree	1	3/17/	94 10/	2/94 9I	H1289	30	7/9/9	5		479
461	Brea	1	5/3/9	4 10/	2/94 9I	11293	50	7/9'9	5		432
500	Bree	đ	4/17/	94 10/	4/94 81	H2459	28	7/11/9	5		450
936	Bree	d	5/1/9	4 10/	4/94 81	H2459	28	7/11 5	95		436
473	Bre	d	6/21/	94 10/	7/94-91	H1057	25	7/14/5)5		388
485	Bre	đ	3/9/9	4 10/	7/94 91	H1293	25	7/14/9	>5		492

> MILKING COWS BY TEST DAY MILK < 67

				THIS		LAST	TEST			CURR	X
NAME	62	L#	DIM	MILK	PREV	FAT	PROT	SCC	FCM	STAT	
809	0	5	84	103.4		2.20	2.90	1	0.0	Ready	0
303	ō	3	48	102.0	54.4	3.90	2.80	3	0.0	Early	C
864	ŏ	- 4	- 44	97.2		3.60	2.80	2	0.0	Open	•
301	ō	4	35	95.7		4.40	3.00	2	0.0	Open	C
302	ŏ	3	227	95.6	82.7	2.90	3.10	1	0.0	Bred	5
310	ō	3	50	94.6	80.0	3.40	2.90	16	0.0	Ready	C
996	ŏ	2	128	93.9	91.4	3.50	3.00	6	0.0	Bred	1
715	ō	6	41	93.7		4.20	3.30	3	0.0	Open	C
869	ŏ	- 4	141	93.5	87.7	4.60	3.30	1	0.0	Preg	1
991	ō	2	58	93.0	99.5	3.20	2.90	1	0.0	Ready	•
733	õ	6	52	92.8	79.2	4.10	3.30	2	0.0	Ready	¢
406	ō	2	43	92.8	0.0	4.20	2.60	5	0.0	Ореп	C
939	ŏ	- 3	23	89.8		5.10	3.90	3	0.0	Open	0
916	ō	3	58	88.7	58.0	3.80	3.20	1	0.0	Ready	
920	ō	3	173	85.9	77.7	3.80	3.50	2	0.0	Preg	1
445	ō	1	285	85.3	83.4	3.10	2.80	3	0.0	Preg	3
410	õ	2	22	84.9	55.0	3.90	3.60	8	0.0	Open	0
744	ō	6	52	84.8	72.3	3.50	3.10	3	0.0	Ready	
832	ō	3	316	84.6	90.6	3.50	3.50	2	0.0	Preg	4
500	ō	1	178	84.6	80.6	4 40	3.30	11	0.0	Bred	3
958	ŏ	- 3	31	84.5		3.90	3,40	6	0.0	Open	(
488	ō	1	209	84.2	79.0	3 90	3 00	1	0.0	Bred	
922	ō	- 3	169	82.8	109.2	3.50	3 00	6	0:0	Bred	
839	ō	4	46	82.2		3.90	3 10	3	0.0	Early	•
897	ō	3	332	82.0	61.6	3.60	3 40	5	0.0	Brød	
411	ō	1	385	81.7	76.5	4.20	3.20	5	0.0	Bred	•
989	ō	2	43	91 5	48.0	4.00	2.90	1	0.0	Open	0
936	ō	2	184	81.0	90.7	2.60	3 10	1	0.0	Bred	-
306	ō	3	245	80.4	77 1	3 90	3 JO	3	0.0	8red	
732	ō		52	79.9	35.1	5.60	3 20	9	0.0	Ready	
519	ō	ī	17	79 7	43	0	3 60	1	00	TBCul	0

Custom Built Farm Buildings Designed To Your Needs

Constraint for the Star Star San San San

 2 10-inch lift belts 3500 lb. axle with or without brakes 12-year building experience in the tables design 2"x2" tube frame chute chute measures 75"x28"x75"

high 4" casters for cradle fold-up Two hydraulic cylinders for extra stability

 tool box for D.C. pump and battery protection

AGRI-INC.

COM 1351

1398

1296

1478 1577

1374 1410

1527

1477

1309 732 1595 519

 See video on the Tilt Table available upon request

 manure grate to keep work area clean

> fold away side gate removable head board

45 min. video from International Hoof Trimming School of Canada

Delivery Available

THREE MODELS TO CHOOSE 1. PORTABLE 2. STATIONARY 3. 3 POINT HITCH

BERKELMAN'S WELDING

RR 7, AYLMER, ONTARIO, CANADA N5H 2R6 (519) 765-4230

