
without creating expensive herd health problems.
Step 8. Wait! Column 11 is the maximum value only of the energy and protem contained in that feed. will no a guide. Chances are, you will not want to pay that price because of the reasons mentioned in the preceeding paragraph. So, and 12) for such things as:
a. Moisture levels-
a. Moisture levels-
c. Transportation costs -
d. Additional storage costs -
e. Grinding costs -
f. Nutrient differences
g. Quality (molds, weeds, fiber, length of cut, maturity, additives) -
h. Storage losses -
. Other -
J. Total adjustment

Pricing Dairy Feeds

 and Adjusting RationsHigh feed prices, drouth-sticken crops and lower milk prices are forcing dairymen into making some difficult decisions concerning their feeding programs Wuality have enough feed of the quast buys? What are feeds are the How do I substitute one feed for How dor? What changes will I ford ano make in my ritions to to make in my rations to help quality and loss of yeld? These are qually and of the questions. Feeds are purchased for matter they contain, and for dry matter the kind and, and for the nutrients in that dry matter. Traditionally, we have used the price of a 100 lbs . of dry shelled corn as the basis for determining the value of energy in feeds. The value of the proten in feeds is determined from the price of a 100 lbs. of 44% soybean oil meal. Knowing this, we can determune how much to pay for different eeds and feed ingredients. Here's how the process works. Follow the steps below, and complete the formulas.
Step 1. Price of dried shelled corn per bu. - x $1.8=$ price dried shelled corn per cwt. \$-

Step. 2. Price of 48\% soybean oul meal per ton $-22=$ ap proximate price of 44 soybean ol meal per cut. \$-
Step 3. Calculate the energy values in column 7 of the table by multiplying the shelled corn factors in column 5 times the answer in Step 1.
Step 4. Calculate the protern values in column 8 of the table by multiplying the soybean oil meal factors in column 6 tumes the answer in Step 2.
Step 5. Add or subtract the values in columns 7 and 8 depending on what the signs in valueper cwt. in column 9
Step 6 Convert value pe
value per T. or per bu. (column t1) value per T. or per bu. (column il) column 10.
Step 7. Enter the purchase price or the feeds of your choice in column 12, and compare them to the computed maximum values in column 11. If column 12 is less than column 11, the feed is a good buy. The greater the percentage saved, the better is the buy - providing you need that particular feed, you can store it and handle it satisfactorily with little or no additional costs or inconveniences, and you can use it in your ration

Calculating Price

 AdjustmentsMoisture adjustments can be calculated as follows: dry matter of the feed purchased - dry matter of that same feed listed in the table X price of that feed in the table. For example, if 70% moist (30\% DM) silage is valued at $\$ 35$ per ton in the table, what is 60%
($40 \% \mathrm{DM}$) silage worth? $40 \% ~ \mathrm{DM}$ 40\% DM) silage worth? $40 \% \mathrm{DM}$
$-30 \% \mathrm{DM} \times \$ 35=\$ 46.67$ per ton before adjustments. Is 50% por ton before adjustments. Is 50% moist silage worth still more because it so, because of the risk of poorer fermentation Use pood judgement. Adjustme
TDN can be made by using the price of shelled corn in Step 1 let's say it is $\$ 8.10$ per cwt. - and dividung it by the TDN content of shelled corn (80), as shown in column 4 of the table. This gives us a rough estimate of the value of 1 lb. of TDN. The answer in this exampie is $\$ 8.10-80=\$.10$ per lb. of TDN.
The price per lb. of CP is sumlarly calculated. Let's say we calculated the price of 44\% SBOM in Step 2 to be $\$ 15.00$ per cwt. In column 3 of the table, we find its CP content to be 45%. The ap-
proximate value of a lb . of CP
would be $\$ 0.33(\$ 15.00-45=$ 0.33).

Next calculate the difference in lbs. of TDN and CP per ton, per cwt., or per bu. of the feed in question compared to its composition as listed in the table. Multiply these differences by the values calculated in the preceeding paragraphs, and adjust
he price accordingly.
How much is a crop worth per acre, or per cutting? Estimate the yeld, the moisture and the quality ofjusted values above this will serve as a gude.
Also, remember, high producing cows need high quality feeds. They won't produce as well as mediocre feeds, which may be quite acceptable for heifers and lower producers. Thus, mediocre feeds, which may appear to be a good buy, could turn out to be very expensive feeds if they restrict production of good cows.
Remember too, your feedman is also making those good buys, and its going to be hard to beat a pro at his own game. In other words, don't separate yourself from good reeds and from the services of good eedmen which you may need.

Ration Adjustments
Column 13 is a guide as to the
maximum amount of some feeds that can safely be fed under good management, expressed either as a percent of the grain mix or total pounds per cow per day. The lower evels would be less risky
Ration changes should be done Gradually and with great care Give cows several weeks to adjus closely with your feedman to the ration properiy balanced

What changes do you need t make in the ration when you another? The factors in columns 5 and 6 of the table can be a usefu guide if you do the opposite of what the sign in front of the factors indicates. For example, you may want to add some barley to your grain mix. How much corn and soybean oil meal (SBOM) would
you take out? About 0.938 lbs . of shelled corn and 0.073 lbs. of 44% SBOM," for each 'bo. of barley added "But, Idont use shelled urn and 44\% SBOM," you say; "I that case, still make the above calculations, and then multiply the shelled corn answer by by tiply the Shelled corn answer by 1.2 to 44\% SBOM answer, above, by 1.1 to convert it to 40\% SBOM. You'll be fairly close. That would make it 1.13 ibs. of ear corn (. $938 \times 1.2=$ 1.128) and . 066 lbs . of 48% SBOM $(.073+1.1=.0664)$

Your Feed Situation
Examine your fields closely, not just the outside rows, but the inner sections, too. Estimate your yields; they may be less than you anticipated. You might need to purchase additional feeds. Or perhaps some of those well eared fields that were going to go into the silo, should be combined. This year, in many areas, corn sulage might be a better buy than corn gram. You might be able to "Swap" your grain corn for other grains which are a better buy, and end up with more feed nutricuts plus some fodder for bedding. If ymall grains such short on forages this fall may this fall may give you some adnext suring.
Test your forages for the routine nutrient analysis, plus minerals pH. It'll give you a good NPN and quality of feeds you have to work with and adjustments that may be needed in your feed program.
This year, poorly eared, ummature, drouthy corn may test higher in nitrates, higher in protein and lower in energy. Moisture levels of silages may be different than expected; they may not be in the optimum range for best fer-mentation-and preservation. A pH test can be a clue. Properly fermented silages should have a pH of about 4.2 or less.
Hay crop forages usually contam apprectable amounts of non(Turn to Page O16)

Feed or Ingredient (1)

Barley
Corn - Ear

Shelled

Oats or Spelts: under 25% of mix over 25% of mix

Rye
Soybeans
Wheat
Brewers Grains - Dry
Wet
Corn Silage - Good Ears
Poor Ears
Corn Factory Wastes
Hay-Grass
-Mostly Grass
-Mostly Legume

- Legume

Alfalfa Meal, 17\%
Beet Pulp
Citrus Pulp
Corn Gluten Feed, 24\% Corn Gluten Meal, 42 Cottonseed
Cottonseed Meal, 41\%
Distill. Corn Grann
Hominy Feed

AS		
DM	FP	Basis
$\frac{(\%)}{(2)}$	$\frac{(\%)}{(3)}$	$\frac{(\%)}{(4)}$
89	12	76
85	7	72
85	9	80

COMPUTING THE VALUE OF FEEDS FED TO DAIRY CATTLLE
Soybean Energy Protein Feeding Conver- Computed
Oil Meal Value/ Value/ Value/ sion Maximum Corn Oil Meal Value/ Value/ Value/ sion Maximum $\frac{\text { Factor }}{(5)} \frac{\text { Factor }}{(6)} \frac{\text { cwt. }}{(7)} \frac{\text { cwt. }}{(8)} \frac{\text { cwt. }}{(9)} \frac{\text { Factor }}{(10)} \frac{\text { Value }}{(11)}$

$$
\begin{array}{r}
.938 \\
.914
\end{array}
$$

$$
\begin{array}{r}
.073 \\
.015
\end{array}
$$.079 .933

.813

104
104
.711
.056
.082
.002
174
.189

.045

.152
.223
.310
.286
1.021
1.048
.526
.374
Purchas Price

Max lbs.

$$
\begin{aligned}
& .015 \\
& .000
\end{aligned}
$$

.100
$\div 2.1=\$$
\qquad $+$ \qquad $=$ \qquad $20=$$+$
 $=$ \qquad $\div 3.1=$
 $=$ ——— $\div 3.1=$
$\div 1.8=$
\qquad _Bu. \$ \qquad
 $+$ 1.8 /Bu./Bu \qquad 0-25\% 25-60\%
10-20\% 4-5 lbs. 20-50\% 10-30\% 20-40 lbs.

 $/ \mathrm{Bu}$
$/ \mathrm{Bu}$ /T.
/T.$x 20=$
$\times 20=$

Molasses

Soybean Oil Meal, 44\%

$$
48 \%
$$

Wheat Bran
Wheat Midds, std.

